Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641960

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
2.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750515

ABSTRACT

The COVID-19 pandemic has affected more than 10 million people worldwide with mortality exceeding half a million patients. Risk factors associated with severe disease and mortality include advanced age,hypertension, diabetes, and obesity. Clear mechanistic understanding of how these comorbidities converge to enable severe infection is lacking. Notably each of these risk factors pathologically disrupts the lipidome and this disruption may be a unifying feature of severe COVID-19. Here we provide the first in depth interrogation of lipidomic changes, including structural-lipids as well as the eicosanoids and docosanoids lipid mediators (LMs), that mark COVID-19 disease severity. Our data reveal that progression from moderate to severe disease is marked by a loss of specific immune regulatory LMs and increased pro-inflammatory species. Given the important immune regulatory role of LMs, these data provide mechanistic insight into the immune balance in COVID-19 and potential targets for therapy with currently approved pharmaceuticals.

3.
Res Sq ; 2020 Jul 22.
Article in English | MEDLINE | ID: covidwho-1431218

ABSTRACT

The COVID-19 pandemic has affected more than 10 million people worldwide with mortality exceeding half a million patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity.1 Clear mechanistic understanding of how these comorbidities converge to enable severe infection is lacking. Notably each of these risk factors pathologically disrupts the lipidome and this disruption may be a unifying feature of severe COVID-19.1-7 Here we provide the first in depth interrogation of lipidomic changes, including structural-lipids as well as the eicosanoids and docosanoids lipid mediators (LMs), that mark COVID-19 disease severity. Our data reveal that progression from moderate to severe disease is marked by a loss of specific immune regulatory LMs and increased pro-inflammatory species. Given the important immune regulatory role of LMs, these data provide mechanistic insight into the immune balance in COVID-19 and potential targets for therapy with currently approved pharmaceuticals.8.

4.
Res Sq ; 2020 May 12.
Article in English | MEDLINE | ID: covidwho-1431216

ABSTRACT

BACKGROUND: COVID-19 is caused by the severe acute respiratory syndrome virus SARS-CoV-2. It is widely recognized as a respiratory pathogen, but neurologic complications can be the presenting manifestation in a subset of infected patients. CASE PRESENTATION: We describe a 78-year old immunocompromised woman who presented with altered mental status after witnessed seizure-like activity at home. She was found to have SARS-CoV-2 infection and associated neuroinflammation. In this case, we undertake the first detailed analysis of cerebrospinal fluid (CSF) cytokines during COVID-19 infection and find a unique pattern of inflammation in CSF, but no evidence of viral neuroinvasion. CONCLUSION: Our findings suggest that neurologic symptoms such as encephalopathy and seizures may be the initial presentation of COVID-19. Central nervous system inflammation may associate with neurologic manifestations of disease.

5.
Med (N Y) ; 2(3): 263-280.e6, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1284368

ABSTRACT

BACKGROUND: Scaling SARS-CoV-2 testing to meet demands of safe reopenings continues to be plagued by assay costs and supply chain shortages. In response, we developed SalivaDirect, which received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration (FDA). METHODS: We simplified our saliva-based diagnostic test by (1) not requiring collection tubes with preservatives, (2) replacing nucleic acid extraction with a simple enzymatic and heating step, and (3) testing specimens with a dualplex qRT-PCR assay. Moreover, we validated SalivaDirect with reagents and instruments from multiple vendors to minimize supply chain issues. FINDINGS: From our hospital cohort, we show a high positive agreement (94%) between saliva tested with SalivaDirect and nasopharyngeal swabs tested with a commercial qRT-PCR kit. In partnership with the National Basketball Association (NBA) and National Basketball Players Association (NBPA), we tested 3,779 saliva specimens from healthy individuals and detected low rates of invalid (0.3%) and false-positive (<0.05%) results. CONCLUSIONS: We demonstrate that saliva is a valid alternative to swabs for SARS-CoV-2 screening and that SalivaDirect can make large-scale testing more accessible and affordable. Uniquely, we can designate other laboratories to use our sensitive, flexible, and simplified platform under our EUA (https://publichealth.yale.edu/salivadirect/). FUNDING: This study was funded by the NBA and NBPA (N.D.G.), the Huffman Family Donor Advised Fund (N.D.G.), a Fast Grant from Emergent Ventures at the Mercatus Center at George Mason University (N.D.G.), the Yale Institute for Global Health (N.D.G.), and the Beatrice Kleinberg Neuwirth Fund (A.I.K.). C.B.F.V. is supported by NWO Rubicon 019.181EN.004.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Laboratories , SARS-CoV-2/genetics , Saliva
6.
Med (N Y) ; 2(5): 591-610.e10, 2021 05 14.
Article in English | MEDLINE | ID: covidwho-1220962

ABSTRACT

BACKGROUND: Pregnant women are at increased risk for severe outcomes from coronavirus disease 2019 (COVID-19), but the pathophysiology underlying this increased morbidity and its potential effect on the developing fetus is not well understood. METHODS: We assessed placental histology, ACE2 expression, and viral and immune dynamics at the term placenta in pregnant women with and without respiratory severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. FINDINGS: The majority (13 of 15) of placentas analyzed had no detectable viral RNA. ACE2 was detected by immunohistochemistry in syncytiotrophoblast cells of the normal placenta during early pregnancy but was rarely seen in healthy placentas at full term, suggesting that low ACE2 expression may protect the term placenta from viral infection. Using immortalized cell lines and primary isolated placental cells, we found that cytotrophoblasts, the trophoblast stem cells and precursors to syncytiotrophoblasts, rather than syncytiotrophoblasts or Hofbauer cells, are most vulnerable to SARS-CoV-2 infection in vitro. To better understand potential immune mechanisms shielding placental cells from infection in vivo, we performed bulk and single-cell transcriptomics analyses and found that the maternal-fetal interface of SARS-CoV-2-infected women exhibited robust immune responses, including increased activation of natural killer (NK) and T cells, increased expression of interferon-related genes, as well as markers associated with pregnancy complications such as preeclampsia. CONCLUSIONS: SARS-CoV-2 infection in late pregnancy is associated with immune activation at the maternal-fetal interface even in the absence of detectable local viral invasion. FUNDING: NIH (T32GM007205, F30HD093350, K23MH118999, R01AI157488, U01DA040588) and Fast Grant funding support from Emergent Ventures at the Mercatus Center.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Angiotensin-Converting Enzyme 2/genetics , Female , Humans , Placenta/metabolism , Pregnancy , Pregnancy Complications, Infectious/metabolism , SARS-CoV-2
7.
Emerg Infect Dis ; 27(4): 1146-1150, 2021 04.
Article in English | MEDLINE | ID: covidwho-1147295

ABSTRACT

The expense of saliva collection devices designed to stabilize severe acute respiratory syndrome coronavirus 2 RNA is prohibitive to mass testing. However, virus RNA in nonsupplemented saliva is stable for extended periods and at elevated temperatures. Simple plastic tubes for saliva collection will make large-scale testing and continued surveillance easier.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , RNA, Viral , SARS-CoV-2 , Saliva/virology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Capacity Building/methods , Humans , RNA Stability , RNA, Viral/isolation & purification , RNA, Viral/physiology , Reproducibility of Results , Resource Allocation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Specimen Handling/economics , Specimen Handling/instrumentation , Specimen Handling/methods
8.
Emerg Infect Dis ; 27(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1146720

ABSTRACT

We analyzed feasibility of pooling saliva samples for severe acute respiratory syndrome coronavirus 2 testing and found that sensitivity decreased according to pool size: 5 samples/pool, 7.4% reduction; 10 samples/pool, 11.1%; and 20 samples/pool, 14.8%. When virus prevalence is >2.6%, pools of 5 require fewer tests; when <0.6%, pools of 20 support screening strategies.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , SARS-CoV-2/isolation & purification , Saliva/virology , Specimen Handling/methods , COVID-19/diagnosis , COVID-19/epidemiology , Capacity Building/methods , Health Care Rationing , Humans , Limit of Detection , Resource Allocation/methods , Sensitivity and Specificity , United States
9.
J Immunol ; 206(2): 329-334, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-961742

ABSTRACT

The COVID-19 pandemic has affected more than 20 million people worldwide, with mortality exceeding 800,000 patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity. Each of these risk factors pathologically disrupts the lipidome, including immunomodulatory eicosanoid and docosanoid lipid mediators (LMs). We hypothesized that dysregulation of LMs may be a defining feature of the severity of COVID-19. By examining LMs and polyunsaturated fatty acid precursor lipids in serum from hospitalized COVID-19 patients, we demonstrate that moderate and severe disease are separated by specific differences in abundance of immune-regulatory and proinflammatory LMs. This difference in LM balance corresponded with decreased LM products of ALOX12 and COX2 and an increase LMs products of ALOX5 and cytochrome p450. Given the important immune-regulatory role of LMs, these data provide mechanistic insight into an immuno-lipidomic imbalance in severe COVID-19.


Subject(s)
COVID-19 , Eicosanoids , Lipidomics , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Arachidonate 12-Lipoxygenase/immunology , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/immunology , Arachidonate 5-Lipoxygenase/metabolism , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , Cyclooxygenase 2/immunology , Cyclooxygenase 2/metabolism , Eicosanoids/blood , Eicosanoids/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
11.
ERJ Open Res ; 6(3)2020 Jul.
Article in English | MEDLINE | ID: covidwho-729509

ABSTRACT

The implementation of public health measures during the #COVID19 pandemic may also help to reduce transmission of respiratory illnesses such as influenza https://bit.ly/2BmysRJ.

12.
medRxiv ; 2020 Aug 04.
Article in English | MEDLINE | ID: covidwho-721070

ABSTRACT

Most currently approved strategies for the collection of saliva for COVID-19 diagnostics require specialized tubes containing buffers promoted for the stabilization of SARS-CoV-2 RNA and virus inactivation. Yet many of these are expensive, in limited supply, and not necessarily validated specifically for viral RNA. While saliva is a promising sample type as it can be reliably self-collected for the sensitive detection of SARS-CoV-2, the expense and availability of these collection tubes are prohibitive to mass testing efforts. Therefore, we investigated the stability of SARS-CoV-2 RNA and infectious virus detection from saliva without supplementation. We tested RNA stability over extended periods of time (2-25 days) and at temperatures representing at-home storage and elevated temperatures which might be experienced when cold chain transport may be unavailable. We found SARS-CoV-2 RNA in saliva from infected individuals is stable at 4°C, room temperature (~19°C), and 30°C for prolonged periods and found limited evidence for viral replication in saliva. This work demonstrates that expensive saliva collection options involving RNA stabilization and virus inactivation buffers are not always needed, permitting the use of cheaper collection options. Affordable testing methods are urgently needed to meet current testing demands and for continued surveillance in reopening strategies.

13.
Nat Microbiol ; 5(10): 1299-1305, 2020 10.
Article in English | MEDLINE | ID: covidwho-638387

ABSTRACT

The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription-PCR (RT-qPCR) assays are being used by clinical, research and public health laboratories. However, it is currently unclear whether results from different tests are comparable. Our goal was to make independent evaluations of primer-probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT-qPCR analytical efficiency and sensitivity, we show that all primer-probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer-probe set which has low sensitivity, probably due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used, to ease comparability between outcomes.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/epidemiology , Genetic Variation , Genome, Viral , Humans , Molecular Probe Techniques/statistics & numerical data , Pandemics , Pneumonia, Viral/epidemiology , RNA/genetics , RNA Probes/genetics , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , SARS-CoV-2 , Sensitivity and Specificity
14.
BMC Neurol ; 20(1): 248, 2020 Jun 18.
Article in English | MEDLINE | ID: covidwho-603847

ABSTRACT

BACKGROUND: COVID-19 is caused by the severe acute respiratory syndrome virus SARS-CoV-2. It is widely recognized as a respiratory pathogen, but neurologic complications can be the presenting manifestation in a subset of infected patients. CASE PRESENTATION: We describe a 78-year old immunocompromised woman who presented with altered mental status after witnessed seizure-like activity at home. She was found to have SARS-CoV-2 infection and associated neuroinflammation. In this case, we undertake the first detailed analysis of cerebrospinal fluid (CSF) cytokines during COVID-19 infection and find a unique pattern of inflammation in CSF, but no evidence of viral neuroinvasion. CONCLUSION: Our findings suggest that neurologic symptoms such as encephalopathy and seizures may be the initial presentation of COVID-19. Central nervous system inflammation may associate with neurologic manifestations of disease.


Subject(s)
Betacoronavirus , Coronavirus Infections , Cytokines/cerebrospinal fluid , Encephalitis, Viral , Pandemics , Pneumonia, Viral , Acute Disease , Aged , Biomarkers/cerebrospinal fluid , COVID-19 , Female , Humans , SARS-CoV-2 , Seizures
SELECTION OF CITATIONS
SEARCH DETAIL